项目简介
检测项目
检测目的:
检测镀层、膜层的厚度
测试范围:
金属镀层、氧化物层、涂层、电镀层等厚度
膜厚试验项目介绍
膜厚试验是应用于在线膜厚测量,测氧化物,SiNx,感光保护膜和半导体膜。也可以用来测量镀在钢、铝、铜、陶瓷和塑料等上的粗糙膜层。薄膜表面或界面的反射光会与从基底的反射光相干涉,干涉的发生与膜厚及折光系数等有关,因此可通过计算得到薄膜的厚度,光干涉法是一种无损,精确且快速的光学薄膜厚度测量技术,薄膜测量系统采用光干涉原理测量薄膜厚度。
膜厚试验方法
磁感应测量膜厚试验方法:
采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性,则要求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时,仪器自动输出测试电流或测试信号。早期的产品采用指针式表头,测量感应电动势的大小,仪器将该信号放大后来指示覆层厚度。电路设计引入稳频、锁相、温度补偿等地新技术,利用磁阻来调制测量信号。还采用专利设计的集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。可应用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,以及化工石油待业的各种防腐涂层。
电涡流测量膜厚试验方法:
高频交流信号在测头线圈中产生电磁场,测头靠近导体时,就在其中形成涡流。测头离导电基体愈近,则涡流愈大,反射阻抗也愈大。这个反馈作用量表征了测头与导电基体之间距离的大小,也就是导电基体上非导电覆层厚度的大小。由于这类测头专门测量非铁磁金属基材上的覆层厚度,所以通常称之为非磁性测头。非磁性测头采用高频材料做线圈铁芯,例如铂镍合金或其它新材料。与磁感应原理比较,主要区别是测头不同,信号的频率不同,信号的大小、标度关系不同。与磁感应测厚仪一样,涡流测厚仪也达到了分辨率0.1um,允许误差1%,量程10mm的高水平。采用电涡流原理的测厚仪,原则上对所有导电体上的非导电体覆层均可测量,如航天航空器表面、车辆、家电、铝合金门窗及其它铝制品表面的漆,塑料涂层及阳极氧化膜。覆层材料有一定的导电性,通过校准同样也可测量,但要求两者的导电率之比至少相差3-5倍(如铜上镀铬)。虽然钢铁基体亦为导电体,但这类任务还是采用磁性原理测量较为合适。
萤光X射线装置(XRF)测量膜厚试验方法:
X射线的能量穿过金属镀层的同时,金属元素其电子会反射其稳定的能量波谱。通过这样的原理,我们设计出:膜厚测试仪也可称为膜厚测量仪,又称金属涂镀层厚度测量仪,其不同之处为其即是薄膜厚度测试仪,也是薄膜表层金属元素分析仪。
X射线衍射装置(XRD)测量膜厚试验方法:
简单地说萤光X射线装置(XRF)和X射线衍射装置(XRD)有何不同,萤光X射线装置(XRF)能得到某物质中的元素信息(物质构成,组成和镀层厚度),X射线衍射装置(XRD)能得到某物质中的结晶信息。
方法和常用标准
测试项目 | 测试标准 | 测试周期 |
膜厚试验(膜厚计) | ASTM E376-06 | 4 |
ASTM B659-08 | 4 | |
ASTM B499-09 | 4 | |
DIN EN ISO 2178-1995 | 4 | |
GB/T 4956-2003(CNAS CMA) | 4 | |
GB/T 4957-2003 | 4 |